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Desynchronization and synchronization processes in a randomly coupled ensemble of neurons
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Experimental investigations of the brain shows that synchronization processes play an important role in
brain functioning. To simulate this phenomenon we connect 100 model neurons randomly and study the
influence of three types of connections~excitatory, inhibitory, and mixed excitatory and inhibitory connec-
tions! on the neural network activity. It is found that the neural network model produces a variety of rhythms
~from about 2.1 Hz to 180 Hz!. The type of activity depends on an injected current, connection strength, and
degree of excitability.@S1063-651X~98!10611-6#

PACS number~s!: 87.10.1e, 05.45.1b
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Systems of coupled oscillators have attracted a great
of attention for the past two decades because they appe
many physical, chemical, and biological systems~see, for
example, @1# and references therein!. Specifically, the
achievements in this branch of cross-disciplinary science
be applied to the field of neuroscience.

Experimental investigation of the brain shows that a va
ety of rhythms can be generated by neural ensembles.
example, spindle oscillations~7–14 Hz! and slow oscilla-
tions ~0.5–4 Hz! are found in the thalamic nucleus@2#. Fast
spontaneous oscillations~20–50 Hz! are also present in neo
cortical and thalamic neurons during wake and sleep st
@3#. Jahnsen and Llina´s @4# showed that thalamic neurons ca
produce oscillations in the broad range of frequencies fr
10 Hz to 350 Hz, depending on the value of injected curre

Traditionally it is believed that the closer the neurons
in the brain, the more synchronous their activity becom
On the contrary, recent experiments show that synchron
tion of neurons in the brain occurs even though they are
from each other@5,6#. This finding requires a revision of th
view of the brain and the consideration of the brain a
strongly nonlinear dynamical system, with the network pro
erties being of primary importance.

One more brain property, which can be explained from
least two points of view, is the mechanism of the generat
of the rhythms. First, the frequency of the brain’s rhythm c
be determined by the endogenous frequency of the spe
neuron in the definite brain area@7#. Another explanation is
that the frequency of the brain’s rhythm is determined by
neuron ensemble as a whole system@8#.

Previous work@9# was devoted to the study of globa
synchronization in an ensemble of Hindmarsh-Rose mo
neurons@10#. It was found that chaos generated by this lar
neural network can be correlated over large spatial sca
The Hindmarsh-Rose model is based on three differen
equations that have little basis in physiology other than
model giving rise to bursting that resembles neuronal bu
ing. The bursting generated by the neurons in the brain, h
ever, is due to the movement of ions via the ion channel
the plasma membrane. How the ion channel activity can
fect the endogenous rhythm and synchronization is of in
est in brain research.
PRE 581063-651X/98/58~6!/8036~4!/$15.00
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This paper is an extension of Ref.@9# with a more realistic
neural network with Chay’s neurons@11#. We show that this
model can produce a variety of rhythms, from slow oscil
tions ~about 2.1 Hz! to very high frequencies~up to 180 Hz!,
and chaos. The type of activity depends on the value of
jected current, connectivity strength, and degree of excita
ity of the neural network model. This neural network exhi
its both synchronous and asynchronous activity at
different time scales: the bursting scale and spiking scale

The neural network under consideration is described b

Cm

dVi

dt
5ḡIm`

3 h`~VI2Vi !1ḡK,Vni
4~VK2Vi !

1ḡK,C

Ci

11Ci
~VK2Vi !1ḡL~VL2Vi !

1I app1 (
j 51,j Þ i

N

āi j Sj~ t !, ~1!

dni /dt5~n`2ni !/tn , ~2!

dCi /dt5rm`
3 h`~VI2Vi !2kCCi , ~3!

whereCm is the membrane capacitance;Vi is the membrane
potential of thei th neuron (i 51,2,. . . ,N); N is the number
of neurons;VI , VK , and VL are the reversal potentials fo
‘‘mixed’’ Na 1-Ca21, K1, and leakage ions, respectively;Ci
is the concentration of intracellular Ca21 ions divided by its
dissociation constant from the receptor;ḡI , ḡK,V , ḡK,C , and
ḡL are the maximal conductances;m` andh` are the prob-
abilities of activation and inactivation of the mixed chann
ni is the probability of opening the voltage-sensitive K1

channel;n` is the steady state value ofni ; tn is the relax-
ation time;kC is the rate constant for the efflux of intrace
lular Ca21 ions;r is a factor that converts electrical gradie
to chemical gradient while taking care of the surface to
volume ratio; andI app is the injected current. The couplin
coefficientsāi j 5cai j /N are chosen from a uniform random
number generator in the interval@2c/N,c/N#, wherec mea-
8036 © 1998 The American Physical Society
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sures the synaptic strength. The steady state probability f
tionsm` , h` , andn` and the relaxation timetn are defined
by the expressions@11#

y5ay /~ay1by!,

wherey stands form` , h` , andn` , and

am50.1~25.01V!/@12exp~20.1V22.5!#,

bm54.0 exp@2~V150.0!/18.0#,

ah50.07 exp~20.05V22.5!,

bh51/@11exp~0.1V22.0!#,

an50.01~20.01V!/@12exp~20.1V22.0!#,

bn50.125 exp@2~V130.0!/80.0#,

tn5@9.2~an1bn!#21.

The i th neuron is connected ‘‘synaptically’’ to thej th
neuron only when thej th neuron is ‘‘active’’@9#. The activ-
ity of j th neuron is denoted by the binary Heaviside funct
Sj (t), with the threshold potentialVth5230 mV. When the
j th neuron is active (Vj.Vth), Sj (t)51; otherwise,Sj (t)
50.

Specifically, we investigated the bifurcation structure
an isolated neural cell as a function of the injected curr
I app @Fig. 1~a!#. WhenI app,22.40mA/cm2 the cell is qui-
escent. Above this point, we have periodic bursting with t
spikes per burst and burst frequency (Fb) from 2.1 to 3.4 Hz.
WhenI app.22.08mA/cm2, we have periodic bursting with
three spikes per burst andFb52.8– 7.1 Hz. IfI app is above
20.69mA/cm2, we have four spikes per burst and burst fr
quency ofFb55.5– 7.9 Hz. This frequency belongs to th
upper u and spindle regions~7–14 Hz!. When I app
50.04– 0.12mA/cm2 we have chaotic bursting. A further in
crease ofI app from 0.12 to 0.36mA/cm2 gives periodic
bursting again, with five spikes per burst and frequencies
Fb56.7– 7.3 Hz. Then, atI app50.36– 0.49mA/cm2, we
have chaotic bursting, which leads to an inverse perio
doubling scenario. So, atI app50.5 mA/cm2, the total length
of four different interspike periods is equal to 107 ms, whi
corresponds to the frequency 9.3 Hz. WhenI app
50.53– 0.63mA/cm2, we have two-spike periods, with a to
tal length of 51–54 ms, which corresponds to the frequen
18.5–19.6 Hz. AboveI app50.63mA/cm2, the isolated cell
model produces continuous spiking activities, with the sp
frequencies from 40 to 101 Hz. Time series of the act
potential for different parts of the bifurcation diagram in Fi
1~a! are shown in Fig. 1~b!.

We also investigated the bifurcation structure and tw
dimensional~2D! plots of the neurons’ activity for the neura
network as a function of the type of neuron connectivi
excitatory, inhibitory, and mixed excitatory and inhibito
connections. In the latter case we used approximately e
numbers of excitatory and inhibitory connections. One h
dred cells are chosen for our study (N5100). In all simula-
tions we used identical initial conditions for all neurons a
I app50.08mA/cm2 ~the case of chaotic bursting of the ind
c-

f
t

-

of

ic

s

e
n

-

:

al
-

vidual neurons without connections!. These initial conditions
can be considered as the external stimulus for the ne
ensemble.

At I app50.08mA/cm2 and āi j 50.0 for all i and j
(c50.0), we have chaotic synchronous bursting~Fig. 2, sec-
ond trace!. In this case we have independent neurons with
connections with identical initial conditions. Atc53.0 and
0,ai j ,1 mA/cm2 ~only excitatory connections!, the neural
network produces regular bursting with four to six spikes a
Fb56.5– 7.1 Hz.@In neurons there areg-aminobutyric acid
~GABA! secreting inhibitory cells anda-amino-3-hydroxy-
5-methyl-4-isoxazdepropionic acid~AMPA! secreting exci-
tatory cells. GABA can ‘‘excite’’ Cl2 or K1 currents, which
are outward currents. AMPA, on the other hand, excite
Na1 current, which is an inward current. We have concep
ally modeled this synaptic effect by introducing positive
negative coupling constants.# We observe weak desynchro

FIG. 1. ~a! Bifurcation diagram for the interspike interval vs th
injected currentI app for an isolated neural cell.~b! Time series of
action potentialV1 for increasing values ofI app ~from top to bottom
I app50.0, 0.08, 0.5, and 3.0mA/cm2, respectively!. The values
of the parameters used in this figure and the subsequent fig
are Cm51 mF/cm2, VI5100 mV, VK5275 mV, VL5240 mV,

ḡI572.0 mS/cm2, ḡK,V568.0 mS/cm2, ḡK,C50.48 mS/cm2,

ḡL50.28 mS/cm2, r50.0108mM/~mV ms!, and kC

50.001 94 ms21.
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FIG. 2. Two-dimensional plots of the neural network activity with purely inhibitory or purely excitatory connections for different v
of strengthc. The neuron number is shown on theY axis. The right column shows the details of the corresponding traces of the left col
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nization of bursts within 20 ms and spiking frequencies
45–127 Hz~Fig. 2, third trace!. Within the burst, chaotic
wavelike spiking activity is also found. An increase ofc to
10.0 ~fourth trace in Fig. 2! gives a decrease of burstin
frequency toFb55.1 Hz, an increase of the number
spikes per burst to 8–9, and an average spiking frequenc
to Fs5180 Hz. Wavelike spiking activity within the burs
becomes more synchronous. A further increase ofc to 100.0
~bottom trace in Fig. 2! leads to chaotic spiking activity with
out bursts, with interspike intervals in the range 18.9–2
ms ~53–34 Hz!. The remarkable property of this regime
that almost all neurons are strongly synchronized~desyn-
chronization is less than 0.25 ms!. Thus we see that the in
crease of connectivity strength and the degree of excitab
of the neural network~due to the increase of the avera
value of excitatory connections! lead to the synchronization
of neuron outputs on the level of bursts and spikes. When
used only inhibitory connections in the network atc523.0
and 0,ai j ,1 mA/cm2 ~upper trace in Fig. 2!, we observe
another type of activity~chaotic asynchronous bursting o
wavelike bursting activity!. The transition time from the ini-
tial state to this activity is about 200 ms. It corresponds to
reaction time of the neural network to the external stimul
Note that a further increase of inhibitory connectivity resu
in only a decrease of the reaction time to about 30 ms ac
52100.0, but does not influence qualitatively the 2D p
ture of the neurons’ activity. Thus the inhibitory connectio
f
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FIG. 3. Bifurcation diagram for~a! and ~c! interspike intervals
and~b! and~d! calcium concentration vs the connectivity strengthc
for the first neuron in the network ofN5100 neurons. We have~a!

and~b! only excitatory connections atāi j .0 for all i andj and only

inhibitory connections atāi j ,0 and ~c! and ~d! mixed excitatory
and inhibitory connections21 mA/cm2,ai j ,1 mA/cm2 for all i
and j.
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are responsible for desynchronization of neural network
tivity.

To understand the cause of this different behavior of
neural network for the cases of purely excitatory or pur
inhibitory connections on the cell level, we study bifurcati
diagrams for interspike intervals@Fig. 3~a!# and calcium con-
centration@Fig. 3~b!# as functions of connectivity strength
We see that the diagrams have qualitatively different beh
ior, depending on the strengthc. For the positive values ofc,
we observe the appearance of both low-frequency and h
frequency components in neural network activity. This sh
of the bursting frequency from the lowera to theu region is
a pure consequence of the network properties of the ne
network. The appearance of a high-frequency componen
lows better synchronization and, as a consequence, an
crease of the average activity amplitude. This property of
highly excitable neural ensemble can be considered as
basis of the appearance of epilepsy. Epileptic activity
similar features: an increase of amplitude, an increase of
chronization, a decrease of chaos, and the appearance of
frequency components. The analysis of the bifurcation d
gram for calcium concentration shows the existence o
stable lower boundary and quantization ofC. The increase of
connectivity strength yields an increase in the number
spikes per burst and in intracellular calcium concentrati
When we have only inhibitory connections~i.e., c,0,), we
observe a relatively stable bifurcation picture for intersp
intervals@Fig. 3~a!#. The behavior of calcium concentratio
@Fig. 3~b!# is also different from that in the case of pure
excitatory connections~i.e., c.0). For purely inhibitory
connections, the calcium concentration decreases withucu.
Perhaps this plays a compensatory role for the increas
ucu, supporting stable neural network activity.
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We also investigated a bifurcation structure of the neu
network model for mixed excitatory and inhibitory conne
tions, with approximately equal numbers of excitatory a
inhibitory connections. Bifurcation diagrams for interspik
intervals and calcium concentrations are shown in Figs. 3~c!
and 3~d!, respectively. We see that both figures demonstr
the weak dependence on the connectivity strength. This s
ation supports the point of view that both excitatory a
inhibitory connections are necessary for the stability of n
ral network functioning~see also@12,13#!. Balanced excita-
tory and inhibitory connections allow us to avoid large c
cium fluxes from one cell to another, which are necessary
the production of different functional states.

Thus we show that our neural network model produce
variety of rhythms, from slow oscillations~about 2.1 Hz! to
very high frequencies~up to 180 Hz!, and chaos. The type o
activity depends on the value of the injected current, conn
tivity strength, and degree of excitability of the neural ne
work model. All these rhythms have been found experim
tally in the brain. Our simulations also demonstrate that
excitatory synapses tend to synchronize the neural netw
activity on the levels of bursts and spikes. An increase of
neural network excitability can lead to a phenomenon tha
similar to epilepsy. Inhibitory synapses support desynchro
zation of bursting and tend to inhibit overloading and larg
amplitude oscillations in the neural ensemble.
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